1. Solve $x^2 - y^2 = 15$ and x + y = 3 for x and y.

$$\begin{cases} x^2 - y^2 = 15 \dots (1) \\ x + y = 3 \dots (2) \end{cases}$$

Let $x = 1.5 + k$, by (2) $y = 1.5 - k$.
Substitute in (1), $(1.5 + k)^2 - (1.5 + k)^2 = 15$
 $\therefore 6k = 15 \implies k = 2.5$
 $\therefore x = 1.5 + 2.5 = 4$, $y = 1.5 - 2.5 = -1$.

2. Solve
$$\begin{cases} (x+1)^2(y+1)^2 = 27xy\\ (x^2+1)(y^2+1) = 10xy \end{cases}$$

$$\begin{cases} \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 \left(\sqrt{y} + \frac{1}{\sqrt{y}}\right)^2 = 27 \dots (1) \\ \left(x + \frac{1}{x}\right) \left(y + \frac{1}{y}\right) = 10 \dots (2) \end{cases}$$

Put $u = \sqrt{x} + \frac{1}{\sqrt{x}}$, $v = \sqrt{y} + \frac{1}{\sqrt{y}}$

Then $x + \frac{1}{x} = u^2 - 2$, $y + \frac{1}{y} = v^2 - 2$...(3).

The system of equations become

 $\begin{cases} u^2 v^2 = 27 \dots (4) \\ (u^2 - 2)(v^2 - 2) = 10 \dots (5) \end{cases}$ From (5), $u^2 v^2 - 2(u^2 + v^2) + 4 = 10$ From (4), $27 - 2(u^2 + v^2) + 4 = 10$

$$u^2 + v^2 = \frac{21}{2} \dots (6)$$

From (6) and (4), u^2 , v^2 are roots of

$$t^{2} - \frac{21}{2}t + 27 = 0 \Longrightarrow 2t^{2} - 21t + 54 = 0 \Longrightarrow t = 6, \frac{9}{2}$$

 $\therefore u^{2}, v^{2} = 6, \frac{9}{2} \Longrightarrow u^{2} - 2, v^{2} - 2 = 4, \frac{5}{2} \Longrightarrow x + \frac{1}{x}, y + \frac{1}{y} = 4, \frac{5}{2}$

(a) $x + \frac{1}{x} = 4 \Longrightarrow x^2 - 4x + 1 = 0 \Longrightarrow x = 2 \pm \sqrt{3}$

(b)
$$x + \frac{1}{x} = \frac{5}{2} \Longrightarrow 2x^2 - 5x + 2 = 0 \Longrightarrow x = 2, \frac{1}{2}$$

Since (1),(2) is symmetric in x, y, the solutions are

$$(x, y) = (2, 2 \pm \sqrt{3}), (\frac{1}{2}, 2 \pm \sqrt{3}), (2 \pm \sqrt{3}, 2), (2 \pm \sqrt{3}, \frac{1}{2}).$$

3. Solve the system, $\begin{cases} ax + by = (x - y)^2 \\ by + cz = (y - z)^2 \\ cz + ax = (z - x)^2 \end{cases}$ where a, b, c > 0? $\begin{cases} ax + by = (x - y)^2 \dots (1) \\ by + cz = (y - z)^2 \dots (2) \\ cz + ax = (z - x)^2 \dots (3) \end{cases}$ First we solve (1) and (2) by rewriting as:

(i)
$$ax + by = (x - y)^2 \Longrightarrow y^2 - y(2x + b) + (x^2 - ax) = 0 \dots (1)$$

(ii)
$$by + cz = (y - z)^2 \Longrightarrow y^2 - y(2z + b) + (z^2 - cz) = 0 \dots (2)$$

(1)
$$\equiv$$
 (2), $\begin{cases} 2x + b = 2z + b \dots (4) \\ x^2 - ax = z^2 - cz \dots (5) \end{cases}$

From (4), $x = z \dots (6)$

(6)
$$\downarrow$$
 (5), $x^2 - ax = x^2 - cx \Longrightarrow (a - c)x = 0 \dots (7)$

(i) If
$$a \neq c, x = z = 0$$
, substitute in (1), $y^2 - yb = 0 \Longrightarrow y = 0$ or b

Note that the equation $cz + ax = (z - x)^2 \dots (3)$ is satisfied for x = z = 0.

(ii) If a = c, from (6), x = z = t is a free variable. Substitute in (3), $at + at = (t - t)^2 \Longrightarrow t = 0$ (x, y, z) = (0, 0, 0)

Similarly we can solve (2), (3) and substitute in (1) or solve (3), (1) and substitute in (2).

Complete solution: (x, y, z) = (0, 0, 0), (a, 0, 0), (0, b, 0)(0, 0, c).

4. If x + 3y + 5z = 200 and x + 4y + 7z = 225, then what is x + y + z equal to?

$$S:\begin{cases} x + 3y + 5z = 200 \dots (1) \\ x + 4y + 7z = 225 \dots (2) \\ x + y + z = k \dots (3) \end{cases}$$

The coefficient determinant of S is zero.

In order the system to have solution, there must be a free valuable. Let this be z, and interestingly, z can be any value you like. For simplicity, put z = 0.

(1) and (2) becomes
$$\begin{cases} x + 3y = 200 \dots (4) \\ x + 4y = 225 \dots (5) \end{cases}$$
Solving, $x = 125$, $y = 25$.
 $x + y + z = 125 + 25 + 0 = 150$

5. Solve
$$\begin{cases} x + \sqrt{y} = 7\\ y + \sqrt{x} = 11 \end{cases}$$

Method 1

 $\begin{cases} x + \sqrt{y} = 7 \dots (1) \\ y + \sqrt{x} = 11 \dots (2) \end{cases}$ Put $u = \sqrt{x}$, $v = \sqrt{y}$. The system of equation becomes $\begin{cases} u^2 + v = 7 \dots (3) \\ u + v^2 = 11 \dots (4) \end{cases}$ From (1), $v = 7 - u^2 \dots (5)$ $(5)\downarrow(4), \ u+(7-u^2)^2=11$ $u^4 - 14u^2 + u + 38 = 0$ $\therefore u = 2, 3.1313, -3.2832, -1.8481.$ Since $u = \sqrt{x} > 0$ $\therefore u = 2, 3.1313 \dots (6)$ $\therefore x = u^2 = 4,9.805$ $(6)\downarrow(5), v = 3, -89.14$ Since $v = \sqrt{y} > 0, v = 3$ $\therefore y = v^2 = 9$ $\therefore x = 4, y = 9$ is the only answer. Method 2 Numerical method $x + \sqrt{y} = 7 \Longrightarrow x = 7 - \sqrt{y}$ $y + \sqrt{x} = 11 \Longrightarrow y = 11 - \sqrt{x}$ $\begin{cases} y_n = 11 - \sqrt{x_n} \dots (1) \\ x_{n+1} = 7 - \sqrt{y_n} \dots (2) \end{cases}$ We set up our iterative formula, We choose $x_1 = 1$, from (1), $y_1 = 10$. $\therefore (x_1, y_1) = (1, 10)$

From (2), $x_2 = 7 - \sqrt{10} \approx 3.837722$ From (1), $y_1 = 11 - \sqrt{3.837722} \approx 9.0409895$ $\therefore (x_2, y_2) = (3.837722, 9.0409895)$

Continue in this way:

$$\therefore x = 4, y = 9$$

n	x(n)	y(n)
1	1	10
2	3.83772234	9.040989449
3	3.993176186	9.001706682
4	3.999715567	9.00007111
5	3.999988148	9.000002963
6	3.999999506	9.00000123
7	3.999999979	9.00000005
8	3.999999999	9
9	4	9
10	4	9

1/6/2020 Yue Kwok Choy